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Abstract. All lowest-order amplitudes for e+e− → 4fγ are calculated including five anomalous quartic
gauge-boson couplings that are allowed by electromagnetic gauge invariance and the custodial SU(2)c
symmetry. Three of these anomalous couplings correspond to the operators L0, Lc, and Ln that have been
constrained by the LEP collaborations in WWγ production. The anomalous couplings are incorporated
in the Monte Carlo generator RacoonWW1. Moreover, for the processes e+e− → 4fγ RacoonWW
is improved upon including leading universal electroweak corrections such as initial-state radiation. The
discussion of numerical results illustrates the size of the leading corrections as well as the impact of the
anomalous quartic couplings for LEP2 energies and at 500GeV.

1 Introduction

In recent years, the experiments at LEP and the Teva-
tron have established the existence of elementary self-
interactions among three electroweak gauge bosons,
mainly by analysing the reactions e+e− → W+W− and
pp̄ → Wγ + X. The empirical bounds (see e.g. [1]) on
anomalous triple gauge-boson couplings confirm the
Standard-Model (SM) couplings at the level of a few per
cent. Recently, the LEP collaborations have started to put
also bounds on anomalous quartic gauge-boson couplings
(AQGC) upon studying the processes e+e− → W+W−γ,
e+e− → Zγγ, and e+e− → νν̄γγ. The OPAL [2], L3 [3]
and ALEPH collaborations have already presented first
results, which have been combined by the LEPEWWG
[4].

The experimental analysis of anomalous triple and
quartic gauge-boson couplings requires precise predictions
from Monte Carlo generators including these anomalous
couplings. In particular, it is necessary to account for
the instability of the produced weak bosons, which de-
cay into fermion–antifermion pairs. While several gener-
ators including triple gauge-boson couplings in e+e− →
WW → 4f exist for quite a long time [5], up to now no
generator has been available that deals with the processes

a Heisenberg fellow of the Deutsche Forschungsgemeinschaft
1 RacoonWW can be downloaded from

http://www.hep.psi.ch/racoonww/racoonww.html

e+e− → WW(γ) → 4fγ in the presence of AQGC2. As
a preliminary solution [2,3] a reweighting technique was
used in existing programs for e+e− → WW(γ) → 4fγ in
the SM where the SM matrix elements were reweighted
with the anomalous effects deduced from the program
EEWWG [7] for on-shell WWγ production. The aim of
this paper is to improve on this situation by implement-
ing the relevant AQGC in the Monte Carlo generator
RacoonWW [8], which is at present the only generator
for all processes e+e− → 4fγ. SM predictions for all 4fγ
final states obtained with this generator were presented
in [9]; further results for specific final states can be found
in [6,10,11]. Here we supplement these numerical results
by a study of AQGC effects at LEP2 and linear collider
energies. Moreover, we include two quartic gauge-boson
operators in the analysis that, to the best of our knowl-
edge, have not yet been considered in the literature before.

As a second topic, we improve the RacoonWW pre-
dictions for 4fγ production by including the dominant
leading electroweak corrections. In particular, we take into
account additional initial-state radiation (ISR) at the lead-
ing-logarithmic level in the structure-function approach
of [12], where soft-photon effects are exponentiated and
collinear logarithms are included up to order O(α3). Lead-
ing universal effects originating from the renormalization
of the electroweak couplings are included by using the so-
called Gµ-input-parameter scheme. The singular part [13]

2 While finishing this paper a version of the Monte Carlo gen-
erator WRAP [6] became available that also includes AQGC
but uses a different set of operators
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of the Coulomb correction, which is relevant for interme-
diate W-boson pairs in e+e− → WW(γ) → 4fγ near their
kinematical threshold, is also taken into account.

The paper is organized as follows. In Sect. 2 we in-
troduce the relevant AQGC and give the corresponding
Feynman rules, which are used in Sect. 3 to calculate the
AQGC contributions to all e+e− → 4fγ amplitudes. In
Sect. 4 we improve the tree-level predictions by including
leading universal electroweak corrections. Section 5 con-
tains our discussion of numerical results, which illustrate
the impact of the leading corrections to the SM predic-
tions as well as the effects of the AQGC. A summary is
given in Sect. 6.

2 Anomalous quartic gauge-boson couplings

Since we consider the class of e+e− → 4fγ processes in
this paper, we restrict our analysis to anomalous quar-
tic gauge-boson couplings (AQGC) that involve at least
one photon. Moreover, we consider only genuine AQGC,
i.e. we omit all operators that contribute also to triple
gauge-boson couplings, such as the quadrilinear part of the
well-known operator FµνW+,ρ

ν W−
ρµ. Imposing in addition

a custodial SU(2)c invariance [14] to keep the ρ parame-
ter close to 1, we are left with operators of dimension 6 or
higher. Following [7,15–17] we consider dimension-6 oper-
ators for genuine AQGC that respect local U(1)em invari-
ance and global custodial SU(2)c invariance. These sym-
metries reduce the set of such operators to a phenomelogi-
cally accessible basis. More general AQGC were discussed
in [18].

In order to construct the relevant AQGC, it is conve-
nient to introduce the triplet of massive gauge bosons

Wµ =
(
W
1
µ,W

2
µ,W

3
µ

)
(2.1)

=
(

1√
2
(W+ +W−)µ,

i√
2
(W+ −W−)µ,

1
cw
Zµ

)
,

where W±
µ and Zµ are the fields of the W± and Z bosons,

and the (abelian) field-strength tensors

Fµν = ∂µAν − ∂νAµ,

W
i,µν

= ∂µW
i,ν − ∂νW i,µ

, (2.2)

where Aµ is the photon field. The parameter cw is the
cosine of the electroweak mixing angle. The quartic di-
mension-6 operators are obtained upon contracting two
factors of Wµ with two field-strength tensors. Under the
explained symmetry assumptions there are five indepen-
dent AQGC operators of dimension 6. We choose the fol-
lowing basis:

L0 = − e2

16Λ2
a0 F

µνFµνWαW
α
,

Lc = − e2

16Λ2
ac F

µαFµβW
β
Wα,

Ln = − e2

16Λ2
an εijkF

µνW
i

µαW
j

νW
k,α
,

L̃0 = − e2

16Λ2
ã0 F

µνF̃µνWαW
α
,

L̃n = − e2

16Λ2
ãn εijk F̃

µνW
i

µαW
j

νW
k,α
, (2.3)

where
F̃µν =

1
2
εµνρσF

ρσ (ε0123 = +1) (2.4)

is the dual electromagnetic field-strength tensor, and e is
the electromagnetic coupling. The scale Λ is introduced to
keep the coupling constants ai dimensionless. The opera-
tors L0 and Lc, which were introduced in [15], conserve
the discrete symmetries3 C, P, and CP, while the others
respect only one of these symmetries. The operator Ln,
which was defined in [7,16,17], conserves only P, but vio-
lates C and CP. The P-violating operators L̃0 and L̃n have
to our knowledge not yet been considered in the literature.
While L̃0 conserves C and violates CP, L̃n conserves CP
and violates C.

We add some comments on the completeness of the set
(2.3) of quartic couplings. At first sight, there are three
more P-violating couplings of dimension 6 that can be
constructed with the tensor εµνρσ, namely

εijk εµνρσW
i,µα
W

j,ν
W

k,ρ
Fσ

α,

εijk εµνρσW
i,µν
W

j,ρ
W

k,α
Fσ

α,

εµνρσF
µνF ραW

σ
Wα. (2.5)

These operators can be reduced to L̃0 and L̃n by exploiting
the Schouten identity

gαβεµνρσ + gαµενρσβ + gανερσβµ
+gαρεσβµν + gασεβµνρ = 0, (2.6)

which is a consequence of the four-dimensionality of space-
time. Moreover, we could have constructed also operators
from ∂µWν and ∂νWµ separately instead of taking Wµν .
However, the new operators obtained this way only lead to
additional terms involving either ∂µWµ or ∂µFµν , which
do not contribute to the amplitudes for e+e− → 4fγ for
massless external fermions.

In order to deduce the Feynman rules for the consid-
ered AQGC, we express the fieldsW

i

µ in terms of physical
fields,

WµWν = W+
µ W

−
ν +W−

µ W
+
ν +

1
c2w
ZµZν ,

εijkW
i,µν
W

j,ρ
W

k,σ
=

i
cw

[
W+

µν(W
−
σ Zρ −W−

ρ Zσ)

3 We adopt the usual convention [19] that PVµP −1 = V µ

and CVµC−1 = −V †
µ for all electroweak gauge bosons. While

for the photon (V = A) these transformations follow from the
C and P invariance of the electromagnetic interaction, for the
weak bosons (V = W ±, Z) they are mere definitions, which
are, however, in agreement with the C and P invariance of the
bosonic part of the electroweak interaction. The CP transfor-
mation, on the other hand, is well-defined for all electroweak
gauge bosons
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−W−
µν(W

+
σ Zρ −W+

ρ Zσ)

+Zµν(W+
σ W

−
ρ −W+

ρ W
−
σ )

]
.(2.7)

Taking all fields and momenta as incoming, we obtain the
Feynman rules

Aµ, p1 {W+
α ;Zα} , p3

Aν , p2

{
W−

β ;Zβ

}
, p4

= i
e2

8Λ2

{
1;

1
c2w

} {
4 a0 gαβ [(p1p2)gµν − pν1pµ2 ]

+ac [(pα1 p
β
2 + p

β
1p

α
2 )g

µν + (p1p2)(gµαgνβ + gναgµβ)

−pν1(pβ2gµα + pα2 g
µβ)− pµ2 (pβ1gνα + pα1 g

νβ)]

+4 ã0 gαβp1ρp2σεµρνσ
}
, (2.8)

Aµ, p1 W+
α , p3

Zν , p2 W−
β , p4

= − e2

16Λ2cw

{
an

[
− (p1p2)(gµαgβν − gµβgνα)

−(p1p3)(gµβgνα − gµνgαβ)− (p1p4)(gµνgαβ

−gµαgβν) + pµ2 (pα1 gβν − pβ1gνα) + pµ3 (pβ1gνα
−pν1gαβ) + pµ4 (pν1gαβ − pα1 gβν)− gµν(pβ1pα3
−pα1 pβ4 )− gµα(pν1pβ4 − pβ1pν2)− gµβ(pα1 pν2 − pν1pα3 )

]

+ ãn p1ρ
[
(p1 + p2)νεαβµρ + (p1 + p3)αεβνµρ

+(p1 + p4)βεναµρ − (p2 − p3)σgναεσβµρ
−(p3 − p4)σgαβεσνµρ

−(p4 − p2)σgβνεσαµρ
]}
. (2.9)

Note that the γZW+W− coupling is symmetric with re-
spect to cyclic permutations of ZW+W−, i.e. of (p2, ν),
(p3, α), (p4, β).

In order to evaluate the diagrams with the P-violating
couplings within the Weyl–van der Waerden spinor for-
malism (see [20] and references therein), which we use in
the calculation of our amplitudes, the tensor εµνρσ has
to be translated into the spinor technique. Following the
notation of [20] the tensor is substituted in the Feynman
rules according to the identity (ε0123 = +1)

εµνρσ
(
1
2
σȦB
µ

) (
1
2
σĊD
ν

) (
1
2
σĖF
ρ

) (
1
2
σĠH
σ

)

=
i
4

(
εȦĖεĊĠεBDεFH − εȦĊεĖĠεBF εDH

)
. (2.10)

For the the Standard-Model (SM) parameters and
fields, i.e. for the SM Feynman rules, we follow the con-
ventions of [21]4.

3 Amplitudes with anomalous quartic
gauge-boson couplings

In [9] we have presented the SM amplitudes for all e+e− →
4fγ processes with massless fermions in a generic way.
The various channels have been classified into charged-
current (CC), neutral-current (NC), and mixed CC/NC
reactions, and all amplitudes have been generated from
the matrix elements MCCa and MNCa, which correspond
to the simplest CC and NC reactions, called CCa and
NCa, respectively:

CCa: e+e− → ff̄ ′FF̄ ′,
NCa: e+e− → ff̄F F̄ ,

where f and F are different fermions (f 	= F ) that are
neither electrons nor electron neutrinos (f, F 	= e−, νe)
and their weak-isospin partners are denoted by f ′ and F ′,
respectively. Here we supplement the SM amplitudes of
[9] by the corresponding contributions resulting from the
AQGC given in (2.3). We follow entirely the conventions
of [9] and denote the external particles of the considered
reaction according to

e+(p+, σ+) + e−(p−, σ−)
→ f1(k1, σ1) + f̄2(k2, σ2) + f3(k3, σ3)
+f̄4(k4, σ4) + γ(k5, λ), (3.1)

where the momenta and helicities are given in parentheses.
We list the expressions for the contributions δMCCa,AQGC
and δMNCa,AQGC of the anomalous couplings to the
generic CC and NC matrix elements MCCa and MNCa,
respectively, which have to be added to the SM contri-
butions. From MCCa and MNCa the amplitudes for all
other CC, NC, and CC/NC reactions are constructed as
explained in [9]. Some minor corrections to this generic
construction are given in Appendix A.

We express the AQGC contributions δMCCa,AQGC and
δMNCa,AQGC in terms of the two generic functions
MγV V,AQGC and MZWW,AQGC, which correspond to the
γγV V and γZWW couplings, respectively, with V =
W,Z,

δMσ+,σ−,σ1,σ2,σ3,σ4,λ
CCa,AQGC (p+, p−, k1, k2, k3, k4, k5)

= Mσ+,σ−,−σ1,−σ2,−σ3,−σ4,λ
γWW,AQGC (p+, p−,−k1,−k2,

4 In this context it is important to recall that different con-
ventions are used in the literature concerning the sign of the
electroweak gauge coupling g ≡ e/sw, and thus of the sign of
the sine of the weak mixing angle sw. Since the SM quartic
coupling γZW+W− changes under the inversion of this sign,
which of course can never affect physical quantities, the anoma-
lous γZW+W− coupling also has to be reversed when switching
from one convention to the other, although sw does not appear
in (2.9) explicitly
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Fig. 1. Generic diagram for the AQGC contribution to
e+e− → 4fγ

−k3,−k4, k5)
+Mσ+,σ−,−σ1,−σ2,−σ3,−σ4,λ

ZWW,AQGC (p+, p−,−k1,−k2,
−k3,−k4, k5), (3.2)

δMσ+,σ−,σ1,σ2,σ3,σ4,λ
NCa,AQGC (p+, p−, k1, k2, k3, k4, k5)

= Mσ+,σ−,−σ1,−σ2,−σ3,−σ4,λ
γZZ,AQGC (p+, p−,−k1,−k2,

−k3,−k4, k5)
+M−σ1,−σ2,−σ3,−σ4,σ+,σ−,λ

γZZ,AQGC (−k1,−k2,−k3,−k4,
p+, p−, k5)

+M−σ3,−σ4,σ+,σ−,−σ1,−σ2,λ
γZZ,AQGC (−k3,−k4, p+, p−,

−k1,−k2, k5). (3.3)

The generic Feynman graph that corresponds to
MV1V2V3,AQGC is shown in Fig. 1, where the fermions and
antifermions are assumed as incoming and the photon as
outgoing. Explicitly the generic functions read

Mσa,σb,σc,σd,σe,σf ,λ
γV V,AQGC (pa, pb, pc, pd, pe, pf , k)

= −e
5CγγV V

8
√
2Λ2

δσa,−σb
δσc,−σd

δσe,−σf
gσb

γf̄afb
gσd

V f̄cfd

×gσf

V f̄eff
PV (pc + pd)PV (pe + pf )

×
[
8Aσa,σc,σe,λ

a0
(pa, pb, pc, pd, pe, pf , k)

+Aσa,σc,σe,λ
ac

(pa, pb, pc, pd, pe, pf , k)
]
,

with CγγZZ = 1/c2w, CγγWW = 1, (3.4)

Mσa,σb,σc,σd,σe,σf ,λ
ZWW,AQGC (pa, pb, pc, pd, pe, pf , k)

=
ie5

8
√
2cwΛ2

δσa,−σb
δσc,+δσd,−δσe,+δσf ,− (Qc −Qd)

×gσb

Zf̄afb
g−
Wf̄cfd

g−
Wf̄eff

PZ(pa + pb)PW (pc + pd)

×PW (pe + pf )Aσa,σc,σe,λ
an

(pa, pb, pc, pd, pe, pf , k),
(3.5)

where the propagator functions PV (p) and the fermion–
gauge-boson couplings gσ

V f̄f ′ can be found in [9]. We have
evaluated the auxiliary functions Aσa,σc,σd,λ

ak
with k =

0, c,n in terms of Weyl–van der Waerden spinor products

[20]:

A++++a0
(pa, pb, pc, pd, pe, pf , k)

= (a0 + iã0)
(〈pbk〉∗)2 〈pdpf 〉∗〈pcpe〉

〈papb〉∗ , (3.6)

A++++ac
(pa, pb, pc, pd, pe, pf , k)

=
ac

(pa · pb)
[
2〈papb〉∗〈pdk〉∗〈pfk〉∗〈papc〉〈pape〉

+(〈pbk〉∗)2 〈pdpf 〉∗〈papb〉〈pcpe〉
]
, (3.7)

A++++an
(pa, pb, pc, pd, pe, pf , k)

= (an + iãn)
{

〈pbpf 〉∗〈pdk〉∗〈pape〉
[
〈pak〉∗〈papc〉

+〈pbk〉∗〈pbpc〉+ 〈pek〉∗〈pcpe〉+ 〈pfk〉∗〈pcpf 〉
]

+〈pbpd〉∗〈pfk〉∗〈papc〉
[
〈pck〉∗〈pcpe〉+ 〈pdk〉∗〈pdpe〉

−〈pak〉∗〈pape〉 − 〈pbk〉∗〈pbpe〉
]

−〈pdpf 〉∗〈pbk〉∗〈pcpe〉
[
〈pek〉∗〈pape〉+ 〈pfk〉∗〈papf 〉

−〈pck〉∗〈papc〉 − 〈pdk〉∗〈papd〉
]}
. (3.8)

The remaining polarization combinations follow from
crossing and discrete symmetries,

A++−+
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pa, pb, pc, pd, pf , pe, k),

A+−++
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pa, pb, pd, pc, pe, pf , k),

A+−−+
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pa, pb, pd, pc, pf , pe, k),

A−+++
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pb, pa, pc, pd, pe, pf , k),

A−+−+
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pb, pa, pc, pd, pf , pe, k),

A−−++
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pb, pa, pd, pc, pe, pf , k),

A−−−+
ak

(pa, pb, pc, pd, pe, pf , k)

= A++++ak
(pb, pa, pd, pc, pf , pe, k),

Aσa,σc,σd,−
ak

(pa, pb, pc, pd, pe, pf , k)

=
(
A−σa,−σc,−σd,+

ak
(pa, pb, pc, pd, pe, pf , k)

)∗
,

k = 0, c,n. (3.9)

It is interesting to observe that the helicity amplitudes for
a0 and ã0, and similarly for an and ãn, differ only in factors
±i for equal coupling factors. These AQGC are the ones
that are related by interchanging a field-strength tensor F
with a dual field-strength tensor F̃ in the corresponding
operators in (2.3).
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As we had already done in [9] in the case of the SM
amplitudes, we have numerically checked the amplitudes
with the AQGC against an evaluation by Madgraph [22],
which we have extended by the anomalous couplings. We
find numerical agreement for a set of representative 4fγ
final states.

4 Leading universal electroweak corrections

Besides the genuine AQGC we have also included the dom-
inant leading electroweak corrections to e+e− → 4fγ into
RacoonWW, similar to our construction [23] of an im-
proved Born approximation (IBA) for e+e− → WW →
4f .

The dominant universal effects originating from the
renormalization of the electroweak couplings are included
by using the so-called Gµ-input-parameter scheme. To this
end, the global factor α5 in the cross section is replaced
by α4Gµ

α(0) with

αGµ =
√
2GµM

2
Ws

2
w

π
. (4.1)

While the fine-structure constant α(0) yields the correct
coupling for the external on-shell photon, αGµ

takes into
account the running of the electromagnetic coupling from
zero to M2

W and the leading universal mt-dependent cor-
rections to CC processes correctly. The mt-dependent cor-
rection to NC processes are not included completely. These
could be accounted for by introducing an appropriate ef-
fective weak mixing angle. However, we prefer to keep the
weak mixing angle fixed by c2w = 1 − s2w = M2

W/M
2
Z, in

order to avoid potential problems with gauge invariance
which may result by violating this condition.

Initial-state radiation (ISR) to e+e− → 4fγ is imple-
mented at the leading-logarithmic level in the structure-
function approach of [12] as described for e+e− → 4f in
[8] in equations (5.1)–(5.4),
∫

dσe
+e−→4fγ
IBA =

∫ 1

0
dx1

∫ 1

0
dx2ΓLLee (x1, Q

2)ΓLLee (x2, Q
2)

×
∫

dσ̂e
+e−→4fγ
IBA (x1p+, x2p−). (4.2)

In the structure function ΓLLee (x,Q
2) [8,24] soft-photon

effects are exponentiated and collinear logarithms are in-
cluded up to order O(α3). The QED splitting scale Q2 is a
free parameter in leading-logarithmic approximation and
has to be set to a typical momentum scale of the process.
It is fixed as Q2 = s by default but can be changed to any
other scale in order to adjust the IBA to the full correc-
tion or to estimate the intrinsic uncertainty of the IBA by
choosing different values for Q2.

For processes with intermediate W-boson pairs, e+e−
→ WW(γ) → 4fγ, the singular part [13] of the Coulomb
correction is taken into account, i.e. in this case we have

dσ̂e
+e−→4fγ
IBA = dσ̂e

+e−→4fγ
Born

[
1 + δCoul(s′, k2+, k

2
−)g(β̄)

]
,

s′ = (k+ + k−)2. (4.3)

Fig. 2a,b. Generic diagrams contributing to the Coulomb sin-
gularity in e+e− → 4fγ

The Coulomb singularity arises from diagrams where a
soft photon is exchanged between two nearly on-shell W
bosons close to their kinematical production threshold and
results in a simple factor that depends on the momenta
k± of the W bosons [13,25],

δCoul(s′, k2+, k
2
−) =

α(0)
β̄

Im
{
ln

(
β − β̄ +∆M

β + β̄ +∆M

)}
,

β̄ =

√
s′2 + k4+ + k4− − 2s′k2+ − 2s′k2− − 2k2+k2−

s′
,

β =

√
1− 4(M2

W − iMWΓW)
s′

, ∆M =
|k2+ − k2−|

s′
.

(4.4)

This correction factor is multiplied with the auxiliary
function

g(β̄) =
(
1− β̄2)2 , (4.5)

in order to restrict the impact of δCoul to the threshold
region where it is valid.

For e+e− → 4fγ both diagrams where the real pho-
ton is emitted from the initial state (see Fig. 2a) or from
the final state (see Fig. 2b) contribute to the Coulomb sin-
gularity. Therefore, it is not just given by a factor to the
complete matrix element. However, applying different cor-
rection factors to different diagrams would violate gauge
invariance. Therefore, we decided to use an effective treat-
ment that takes into account the dominant effects of the
Coulomb singularity. We actually implemented two differ-
ent variants:

1. In the first variant we multiply the complete matrix el-
ement with the Coulomb correction factor with k+ =
k1 + k2 and k− = k3 + k4. In this way we multiply the
correct Coulomb correction to all diagrams with ISR
(Fig. 2a). However, in this approach we do not treat
the Coulomb singularity in diagrams with final-state
radiation (Fig. 2b) properly. Nevertheless, this recipe
should yield a good description of the Coulomb singu-
larity, since the diagrams with two resonant W bosons
and photon emission from the initial state dominate
the cross section. This expectation is confirmed by the
numerical results presented below.

2. In the second variant we improve on this prescription
by differentiating between initial-state and final-state
radiation according to the invariant masses in the final
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state. To this end, the W-boson momenta entering the
Coulomb correction factor are fixed as

(k+, k−)=




(k1 + k2, k3 + k4)
for ∆12 < ∆125, ∆34 < ∆345,

(k1 + k2 + k5, k3 + k4)
for ∆12 > ∆125, ∆34 < ∆345

or ∆12 > ∆125, ∆34 > ∆345,
∆125 < ∆345,

(k1 + k2, k3 + k4 + k5)
for ∆12 < ∆125, ∆34 > ∆345

or ∆12 > ∆125, ∆34 > ∆345,
∆125 > ∆345,

(4.6)

where ∆ij = |(ki + kj)2 − M2
W| and ∆ijl = |(ki +

kj + kl)2 −M2
W|. In this way we effectively apply the

correct Coulomb correction factor to all dominating
doubly-resonant contributions, shown in Fig. 2.

The Coulomb singularity is not included in processes that
do not involve diagrams with two resonant W bosons.

Finally, we optionally include the naive QCD correc-
tion factors (1 + αs/π) for each hadronically decaying
W boson.

In order to avoid any kind of mismatch with the decay,
ΓW is calculated in lowest order using the Gµ scheme. This
choice guarantees that the “effective branching ratios”,
which result after integrating out the decay parts, add up
to one when summing over all channels. Of course, if naive
QCD corrections are taken into account, these are also
included in the calculation of the total W-boson width.

5 Numerical results

For our numerical analysis we take the same SM input pa-
rameters as in [8,11]. We use the constant-width scheme,
which has been shown to be practically equivalent to the
complex-mass scheme for the considered processes in [9].
The errorbars shown in the plots for the relative correc-
tions result from the statistical errors of the Monte-Carlo
integration.

5.1 Comparison with existing results

We first compare our results for e+e− → 4fγ including
leading corrections with results existing in the literature.

Predictions for e+e− → 4fγ including ISR corrections
have been provided with the program WRAP [6]. First re-
sults have been published in [11] where also a comparison
with RacoonWW at tree level was performed. Here we
present a comparison between WRAP and RacoonWW
for the same set of input parameters and cuts as in Sect.
5.2. of [11] but including ISR. In this tuned comparison,
the W-boson width is kept fixed at ΓW = 2.04277GeV,
and neither the Coulomb singularity nor naive QCD cor-
rections are included. The results are shown in Figs. 3 and
4.

The absolute predictions on the left-hand sides are
hardly distinguishable. The relative deviations shown on
the right-hand sides reveal that the agreement between
WRAP and RacoonWW is at the level of the statistical
error of about 0.2%. The comparison has been made for
collinear structure functions. Unlike pT-dependent struc-
ture functions, collinear structure functions do not al-
low to take into account the Bose symmetry of the final-
state photons resulting in some double counting [26]. How-
ever, for not too small cuts on the photon energy and
angle these effects are beyond the accuracy of the leading-
logarithmic approximation. This has been confirmed by
the numerical analysis in [6].

In Figs. 5–7 we repeat the comparison between
YFSWW3-1.14 (scheme A) [27] and RacoonWW given
in Sect. 4.1. of [11] for the photonic distributions. But now
we include besides the tree-level predictions of
RacoonWW for e+e− → 4fγ also those including lead-
ing-logarithmic ISR. Note that unlike in all other distri-
butions discussed here, a recombination of photons with
fermions is performed for this comparison. We restrict
ourselves to the “bare” recombination scheme (see [8,11]
for details). Moreover, the W-boson width is calculated
including the full O(α) electroweak corrections together
with naive QCD corrections resulting in ΓW = 2.08699
GeV. We compare the distributions in the photon energy
Eγ , in the cosine of the polar angle θγ of the photon w.r.t.
the e+ beam, and in the angle θγf between the photon
and the nearest charged final-state fermion for the process
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e+e− → ud̄µ−ν̄µγ at
√
s = 200GeV. The differences of

15–20% between YFSWW3 and the pure Born prediction
of RacoonWW (RacoonWW Born), which have already
been shown in [11], reduce to about 5% once the leading
logarithmic ISR corrections are included in RacoonWW
(RacoonWW IBA).

The remaining differences should be due to the still
quite different treatment of visible photon radiation in
RacoonWW and YFSWW3: in contrast to RacoonWW,
YFSWW does not include the complete lowest-order ma-
trix elements for e+e− → 4fγ. Instead, the photon radia-
tion from the final state is treated via PHOTOS [28]. In
particular, for small photon energies, where the differences

are largest, the non-factorizable contributions, which are
not yet included in YFSWW3, might play a role.

In Figs. 8–10 we extend the comparison of the pho-
tonic distributions between YFSWW3 and RacoonWW
to 500GeV. Here the difference is typically at the level
of 10% and in general not reduced by the inclusion of
ISR for e+e− → 4fγ in RacoonWW, i.e. the agreement
without ISR in RacoonWW was accidentally good. One
should also recall that the diagrams without two resonant
W bosons (background diagrams) become more and more
important at higher energies. Thus, the increasing differ-
ence between YFSWW3 and RacoonWW for higher en-
ergies could be due to a less efficient description of final-
state radiation by the effective treatment with PHOTOS.
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(“Born(µ)” indicates that the Born cross sec-
tion for e+e− → ud̄µ−ν̄µγ is taken)

5.2 Standard model predictions

We now discuss the predictions of RacoonWW for var-
ious observables in the SM. Here and in the following,
the width is always calculated from the input parameters
in lowest order in the Gµ scheme including naive QCD
corrections (ΓW = 2.09436GeV). Naive QCD corrections
are included in all results, in particular, also in the Born
results.

The results in the LEP2 energy range were obtained
with the ADLO/TH cuts as defined in [9], those at

√
s =

500GeV with the cuts

θ(l,beam)>10◦, θ(l, l′)>5◦, θ(l, q)>5◦,
θ(γ,beam)>1◦, θ(γ, l)>5◦, θ(γ, q)>5◦,

Eγ>0.1GeV, El>1GeV, Eq>3GeV,
m(q, q′)>0.1GeV, θ(q,beam)>5◦, (5.1)

where θ(i, j) specifies the angle between the particles i
and j in the LAB system, and l, q, γ, and “beam” denote
charged final-state leptons, quarks, photons, and the beam
electrons or positrons, respectively. The invariant mass of
a quark pair qq′ is denoted by m(q, q′). The cuts (5.1)
differ from the ADLO/TH cuts only in the looser cut on
m(q, q′) and in the additional cut on θ(q,beam).

In Fig. 11 we present the total cross section for the pro-
cess e+e− → ud̄µ−ν̄µγ in the LEP2 energy range. On the
left-hand side we show the absolute prediction in lowest
order (Born), including ISR (ISR), and including in addi-
tion the Coulomb singularity according to variant 1) (IBA)

discussed in Sect. 4. On the right-hand side we give the cor-
rections relative to the lowest order including in addition
a curve with the Coulomb singularity according to variant
2) (IBA2). The Coulomb singularity reaches about 5% at
threshold and decreases with increasing energy. The effect
is comparable to the one for the process without photon.
The two variants for the implementation of the Coulomb
singularity show hardly any difference. Consequently, we
will always use variant 1) in the following.

In Figs. 12–14 we present the distributions in the pho-
ton energy Eγ , in the cosine of the polar angle θγ of the
photon w.r.t. the e+ beam, and in the angle θγf between
the photon and the nearest charged final-state fermion
for

√
s = 200GeV. The left-hand sides contain the ab-

solute prediction for the process e+e− → ud̄µ−ν̄µγ in
lowest order (Born) and including the ISR corrections
and the Coulomb singularity (IBA), and for the process
e+e− → ud̄e−ν̄eγ including these corrections. The relative
corrections (right-hand sides) are typically of the order of
−10% wherever the cross sections are sizeable. Relative
to the corresponding lowest-order results, the corrections
to e+e− → ud̄e−ν̄eγ would practically be indistinguish-
able from the relative corrections to e+e− → ud̄µ−ν̄µγ.
We therefore prefer to plot the corrections to e+e− →
ud̄e−ν̄eγ normalized to the lowest-order of e+e− → ud̄µ−
ν̄µγ in order to visualize the effect of the “background”
diagrams contained in e+e− → ud̄e−ν̄eγ. As can be seen,
this effect is comparable to the radiative corrections but
of opposite sign.



210 A. Denner et al.: Probing anomalous quartic gauge-boson couplings via e+e− → 4 fermions +γ

u�de���e
 IBA

u�d�����
 IBA

u�d�����
 Born

cos �


d�
d cos �


[fb]

10:80:60:40:20�0:2�0:4�0:6�0:8�1

200

150

100

50

30

u�de
�

��e


u�d�
�

���


cos �


IBA
Born(�) � 1 [%]

10:80:60:40:20�0:2�0:4�0:6�0:8�1

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

�11

Fig. 13. Distribution in the cosine of the po-
lar angle of the photon w.r.t. the e+ beam for
the processes e+e− → ud̄µ−ν̄µγ and e+e− →
ud̄e−ν̄eγ at

√
s = 200GeV (“Born(µ)” indi-

cates that the Born cross section for e+e− →
ud̄µ−ν̄µγ is taken)

u�de���e
 IBA

u�d�����
 IBA

u�d�����
 Born

�
f [deg]

d�
d�
f

h
fb
deg

i

120100806040200

4

3:5

3

2:5

2

1:5

1

0:5

0

u�de
�

��e


u�d�����


�
f [deg]

IBA
Born(�) � 1 [%]

120100806040200

15

10

5

0

�5

�10

�15

Fig. 14. Distribution in the angle between
the photon and the nearest charged final-
state fermion for the processes e+e− →
ud̄µ−ν̄µγ and e+e− → ud̄e−ν̄eγ at

√
s =

200GeV (“Born(µ)” indicates that the Born
cross section for e+e− → ud̄µ−ν̄µγ is taken)

u�de���e
 IBA

u�d�����
 IBA

u�de���e
 Born

u�d�����
 Born

E
 [GeV]

d�

dE


h
fb

GeV

i

200180160140120100806040200

10

1

0:1

u�de���e


u�d�����


E
 [GeV]

IBA

Born
� 1 [%]

200180160140120100806040200

12

10

8

6

4

2

0

�2

�4

�6

�8

�10

�12 Fig. 15. Distribution in the photon energy
for the processes e+e− → ud̄µ−ν̄µγ and
e+e− → ud̄e−ν̄eγ at

√
s = 500GeV

In Figs. 15–17 we show results for
√
s = 500GeV. Here,

the left-hand sides contain the absolute prediction for the
processes e+e− → ud̄µ−ν̄µγ and e+e− → ud̄e−ν̄eγ in low-
est order (Born) and including the ISR corrections and the
Coulomb singularity (IBA). Note that here the distribu-
tions differ sizeably between the two processes. Therefore,
on the right-hand sides, the IBA predictions for both pro-
cesses are normalized to the corresponding lowest-order
predictions. Where the cross sections are sizeable, the cor-
rections are about +10% for e+e− → ud̄µ−ν̄µγ and +5%
for e+e− → ud̄e−ν̄eγ. They are larger where the cross
sections are small.

5.3 Predictions with anomalous quartic couplings

Since the matrix element depends linearly on the anoma-
lous quartic couplings ai, the cross section is a quadratic
form in the ai. Therefore, it is sufficient to evaluate the
cross section for a finite set of sample values of the anoma-
lous quartic couplings in order to get the cross section for
arbitrary values of these couplings. We restrict ourselves
here to the semileptonic process e+e− → ud̄µ−ν̄µγ and
include ISR and the Coulomb singularity (variant 1). We
use the cuts

Eγ > 5GeV, | cos θγ | < 0.95, | cos θγf | < 0.90,
|m(f, f ′)−MW| < 2ΓW, (5.1)
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where Eγ is the energy of the photon, θγ the angle between
the photon and the beam axis, θγf the angle between the
photon and any charged final-state fermion f , andm(f, f ′)
the invariant mass of the fermion–antifermion pairs that
result from W decay. In the computation of m(µ, νµ) the
momentum of the neutrino is set equal to the missing mo-
mentum, since the neutrino is not detected, i.e. the energy
loss in the ISR convolution (4.2) is implicitly included in
the neutrino momentum.

We first study the influence of the AQGC a0, ac, an, ã0,
and ãn on the cross section at

√
s = 200GeV and 500GeV

separately. Figure 18 shows the cross section normalized
to the SM value as a function of each of these couplings
for all the other ai’s equal to zero. The asymmetry results
from the interference between the SM matrix element and
the matrix element of the AQGC, which is suppressed for
the CP-violating couplings an and ã0. The asymmetry is
small for a0 and ãn and only visible at

√
s = 500GeV

for a0 in Fig. 18, but sizeable for ac5. The cross section is
most sensitive to a0 and ã0 and least sensitive to an and
ãn.

In order to illustrate the potential of LEP2 and a lin-
ear e+e− collider in putting limits on the AQGC, we con-
sider the following two scenarios: an integrated luminos-
ity L = 320 pb−1 at

√
s = 200GeV and L = 50 fb−1 at√

s = 500GeV. The corresponding total SM cross sections

5 The sign of the asymmetry differs from the results of [7],
since the couplings a0 and ac have been implemented [29] in
EEWWG with a sign opposite to the definitions in [7,17],
which agree with our choice
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Fig. 19. 1σ contours in various (ai, aj)
planes for the process e+e− → ud̄µ−ν̄µγ
at

√
s = 200GeV

to e+e− → ud̄µ−ν̄µγ are 16.69 fb and 7.64 fb, respectively.
Assuming that the measured number N of events is given
by the SM cross section σSM = σ(ai = 0) and the experi-
mental errors by the corresponding square-root, we define

χ2 ≡ (N(ai)−N)2

N
=

(
σ(ai)
σSM

− 1
)2
σSML, (5.2)

where N(ai) is the number of events that result from the
cross section with anomalous couplings. Since the square-
root of this χ2 distribution is a quadratic form in the ai,
the hypersurfaces of constant χ2 form ellipsoids. The 1σ
limits resulting from χ2 = 1 on individual couplings can

be illustrated by projecting the ellipsoids into the planes
corresponding to pairs of couplings. Instead of the projec-
tions, often the sections of the planes with the ellipsoids
are used. Note that the ellipses resulting from projections
are in general larger and include those ellipses resulting
from sections of the planes with the ellipsoids. Since the
correlations are small for the cases under consideration,
the difference between both types of ellipses is also small.
In the following figures we include both the projections
and the sections of the ellipsoids using the same type of
lines.

In Figs. 19 and 20 we show some 1σ contours for var-
ious pairs of ai. In addition we list the 1σ limits derived
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Fig. 20. 1σ contours in various
(ai, aj) planes for the process e+e− →
ud̄µ−ν̄µγ at

√
s = 500GeV

from projecting the ellipsoids. Since the effects of a0 and
ã0 and of an and ãn on the cross section are equal up to
relatively small interference terms, also the corresponding
contours of these couplings with other couplings are of
similar size. For transparency we omitted some contours
involving an; for 200GeV (Fig. 19) these contours practi-
cally coincide with the ones for ãn, for 500GeV (Fig. 20)
the contours for an are of the same size and shape as the
ones for ãn but shifted to become approximately symmet-
ric w.r.t. an → −an. The best limits can be obtained for a0
and ã0. The correlations between the different couplings
are in general small, and only a0 and ac show a notice-

able correlation. The limits obtainable at a linear collider
are by about a factor of 200 better than those obtainable
at LEP2. This improvement reflects the enhanced sensi-
tivity of the cross section on the anomalous couplings at
high energies, which can also be seen in Fig. 18, and to a
smaller part the higher luminosity.

6 Summary

We have calculated all lowest-order amplitudes for e+e−
→ 4fγ with five different genuine anomalous quartic
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gauge-boson couplings that are allowed by electromag-
netic gauge invariance and the custodial SU(2)c symmetry.
These couplings include the three operators L0, Lc, and
Ln, which have been constrained by the LEP collabora-
tions by analysing WWγ production, and two additional
P-violating couplings, one of which conserves CP. The five
anomalous couplings have been incorporated in the 4f(γ)
Monte Carlo generator RacoonWW. We have calculated
the dependence of the cross section for e+e− → 4fγ on the
anomalous quartic couplings and illustrated the typical
size of the limits that can be obtained for these couplings
at LEP2 and a 500GeV e+e− collider.

Moreover, we have implemented the dominant leading
electroweak corrections to e+e− →4fγ into RacoonWW.
These include initial-state radiation, the dominant univer-
sal effects originating from the running of the couplings,
and the Coulomb singularity for processes involving W-
boson pairs. We have compared the corresponding pre-
dictions with existing calculations, as far as possible, and
investigated the numerical impact of the dominant correc-
tions.

With the additions described in this paper,
RacoonWW is a state-of-the-art Monte Carlo genera-
tor for the classes of e+e− → 4f and e+e− → 4fγ pro-
cesses with arbitrary massless four-fermion final states,
both for the Standard Model and including anomalous
quartic gauge-boson couplings.
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Appendix

A Some corrections to the generic
construction of e+e− → 4fγ amplitudes

In [9] we have constructed the amplitudes for all e+e− →
4fγ reactions from the two basic channels CCa and NCa,
which are also specified in Sect. 3. Here we take the op-
portunity to correct two mistakes in the corresponding
formulas:

– Equation (2.24) of [9] is only correct for down-type
fermions f , while some arguments have to be inter-
changed for up-type fermions. The correct formula is

Mσ+,σ−,σ1,σ2,σ3,σ4

CC/NCb (p+, p−, k1, k2, k3, k4)

=




Mσ+,σ−,σ1,σ2,σ3,σ4
NCa (p+, p−, k1, k2, k3, k4)

−M−σ3,−σ4,σ1,−σ−,−σ+,σ2
CCa (−k3,−k4, k1,

−p−,−p+, k2)
for I3w,f = −1/2,

Mσ+,σ−,σ1,σ2,σ3,σ4
NCa (p+, p−, k1, k2, k3, k4)

−M−σ3,−σ4,−σ+,σ2,σ1,−σ−
CCa (−k3,−k4,−p+,

k2, k1,−p−)
for I3w,f = +1/2.

(A.1)

The error affected the evaluation of the final states
νeν̄eνµν̄µ and νeν̄euū in Table 1 of [9] at the level of
0.2–0.4%. The corrected results for Table 1 are

σ/fb
e+e− → 4f

running width
e+e− → 4f

constant width
e+e− → 4fγ

constant width

νeν̄eνµν̄µ 8.339(2) 8.321(2) 1.511(1)

νeν̄eu ū 23.91(2) 23.90(2) 6.79(3)

For the final states νeν̄eνµν̄µγ and νeν̄euūγ no change
is visible in the numerical results within the integration
errors after the correction. The numerical smallness of
the correction is due to the fact that the two cases in
(A.1) differ only in the contribution of a non-resonant
background diagram which is suppressed.

– Equation (2.25) of [9] contains some misprints. The
correct formula is

Mσ+,σ−,σ1,σ2,σ3,σ4

CC/NCc (p+, p−, k1, k2, k3, k4)

= Mσ+,σ−,σ1,σ2,σ3,σ4
NCa (p+, p−, k1, k2, k3, k4)

−Mσ+,σ−,σ3,σ2,σ1,σ4
NCa (p+, p−, k3, k2, k1, k4)

−M−σ1,−σ2,−σ+,σ4,σ3,−σ−
CCa (−k1,−k2,−p+,

k4, k3,−p−)

+M−σ1,−σ4,−σ+,σ2,σ3,−σ−
CCa (−k1,−k4,−p+,

k2, k3,−p−)

+M−σ3,−σ2,−σ+,σ4,σ1,−σ−
CCa (−k3,−k2,−p+,

k4, k1,−p−)

−M−σ3,−σ4,−σ+,σ2,σ1,−σ−
CCa (−k3,−k4,−p+,

k2, k1,−p−). (A.2)

However, the numerical evaluations for the correspond-
ing νeν̄eνeν̄e(γ) final states were based on this correct
form.
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